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1. Introduction 
 

LLNL-Earth3D is a computer code designed to support the use of the LLNL-G3D series of models (see 

Simmons et al. 2011, 2012).  The primary purpose of the code is to compute 3-D ray paths for various 

body waves and calculate travel times between a seismic source and a seismic station.  The code 

navigates the hierarchical spherical tessellation framework of the LLNL-G3D models and is multi-

threaded so that a number of ray paths and travel times can be computed concurrently.  LLNL-Earth3D is 

also a more general model interface allowing for model property output, such as seismic velocity and the 

depth (or radius) of velocity discontinuities.   

 

The LLNL-Earth3D code is written in Java and will work on any system with Java version 1.6.0 or 

higher. LLNL-Earth3D has been tested at LLNL on Windows, Linux, OS-X, and SUN systems.   

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 

National Laboratory under Contract DE-AC52-07NA27344. 

 

 

1.1 General Background 
 

LLNL-Earth3D allows for fast calculation of 3-D seismic travel times and ray paths through a 3-D model 

of the Earth specifically represented with the LLNL-G3D global-scale model architecture. The model 

architecture is node-based and consists of a series of surfaces that may undulate (not necessarily 

spherical).  Therefore, Earth’s ellipticity and undulating discontinuity surfaces (such as the Moho) are 

explicitly represented.  Each model surface is defined by a set of nodes evenly distributed around the 

globe, and multiple model properties (e.g. Vp, Vs, Q, etc.) may be defined at each node for a given 
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surface.  The positioning (latitude and longitude) of the model nodes are defined by the vertices (or 

intersections) of the spherical tessellation grids (Figure 1).  The spherical tessellation grids are created by 

recursive subdivision of triangular faces on a spherical surface. Each recursive subdivision of a 

tessellation grid generates higher resolution surfaces and a new level in the tessellation hierarchy which 

may be exploited for fast model referencing (see Simmons et al., 2011). 

 

To represent undulating (aspherical) surfaces, nodes are placed at arbitrary radii along geocentric vectors 

defined from the center of the Earth through the spherical tessellation vertices (Figure 2).  Three-

dimensional piecewise linear interpolation between nodes and surfaces is used to determine the value of 

model parameters at any arbitrary location.  Discontinuities (e.g. the Moho) are represented with two 

surfaces defined at the same location, but with differing values (such as velocity) assigned to the top-side 

and bottom-side sets of nodes.   

  

 
Figure 1. Summary of the LLNL-G3D model architecture.  a) Selected levels of the spherical tessellation grids that define the 

location of nodes in the lateral extent.  Nodes are placed at arbitrary radii in the direction of geocentric vectors pointing from the 

center of the Earth to the vertices.  b) Description of the model surfaces in the LLNL-G3Dv3 P-wave model (Simmons et al., 

2012).  Wavy lines correspond to surfaces that undulate and thick lines correspond to double surfaces needed to honor 

discontinuities.  Flat lines correspond to surfaces that do not undulate, but note that all surfaces conform to the expected 

hydrostatic shape of the Earth (none of the surfaces are flat or spherical).  The figure is from Simmons et al. (2012). 
 

 
Figure 2. Model referencing and node architecture.  (a-b) A hierarchical triangle searching algorithm is used to establish the 

vertices that surround a unit vector in the direction of the point-of-interest,  p̂ .  Barycentric coordinates (triangular weights) are 

inherently determined at each step in the hierarchical search providing lateral interpolation weights at all tessellation levels. (c) 

Model nodes are placed at arbitrary radii in the direction of the vertices allowing for representation of irregular surfaces.  To 

determine radial interpolation weights, radial profiles are determined along p̂  by lateral interpolation of radii for surrounding 

points (R1 interpolated from 
ca1,r 

 and R2 interpolated from 
ca2,r 
).  The distances of R1 and R2 from the point-of-interest (POI) 

provide the simple radial interpolation weights, and any model property can then be determined.  The figure is from Simmons et 

al. (2011). 
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Three-dimensional ray tracing is performed through the complex model using a modified version of the 

Zhao et al. (1992) method that uses pseudobending within the continuous part of the media while 

honoring Snell’s law at discontinuous interfaces (Figure 3).  The ray tracing modifications include 

methods to overcome local travel time minima issues and the ability to find multiple paths for regional 

phases that arrive within some time tolerance (“multi-pathing”). For more detailed information regarding 

model architecture and modeling procedures see Myers et al. (2011), Simmons et al. (2011), and Simmons 

et al. (2012). 

 

 

 
 
Figure 3. Three-dimensional ray tracing procedure adapted from Zhao et al. [1992] and seismic sensitivity definitions.  (top) 

Several trial ray paths are tested to seek out the global minimum travel time.  We perform a limited number of pseudo-bending 

[Um and Thurber 1987] and piercing point adjustment iterations on a set of simple starting paths (black dashed lines).  Ray paths 

that provide travel times within some time tolerance (black solid lines) are further refined through bending and piercing point 

adjustments until only slight improvement (reduction) in travel times is observed (green dashed and solid lines).  The minimum 

time path can then be selected from the set (green solid line).  (bottom) Example 3-D ray paths calculated through the global 

velocity model constructed in Simmons et al. (2011). 
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2. Getting Started  

 
The LLNL-Earth3D code is written in Java and will work on any system with Java version 1.6.0 or 

higher. LLNL-Earth3D has been tested at LLNL on Windows, Linux, OS-X, and SUN systems. The 

LLNL-Earth3D .jar file may be executed by: 

 
java -jar  LLNL-Earth3D.x.x.jar  

 

where “x.x” is a generic version number.  If memory allocations for your platform are insufficient, you 

may need to execute by adding flags:  

 
java -jar -ms1500m -mx1500m  LLNL-Earth3D.x.x.jar  

 

Executing the .jar without any arguments will create a user prompt: 

  
 E3D (input command): 

 

After which you will enter command line options, described below. The program will continue to take 

user input until the user types the command “exit” or “quit”, e.g.: 

 
 E3D (input command): quit 

 

Alternatively, a single command can be run by including the arguments in the command line. For 

example: 

 
 java -jar  LLNL-Earth3D.x.x.jar -getlayerinfo  earthmodel 

 

In the above command, the major operation is to list information about the layers in in the binary earth 

model, which may be a complete path pointing to a binary formatted earth model file.  The code will 

execute this command, then exit LLNL-Earth3D. This option is used to facilitate LLNL-Earth3D being 

called by external programs. 

 

All major operations are executed with switches (such as -getlayerinfo shown above) immediately 

following the .jar file name or at the beginning of the command prompt, depending on your execution 

style. 

 

NOTE:  Working from the prompt is more efficient if multiple operations are to be performed using a 

single earth model since the command line version requires loading a model into memory each time. 

Alternatively, a list of arguments from a text file could be passed simultaneously with the -arglist switch. 

 

To get help regarding usages and the utilities available in the local .jar version, simply type -help at the 

E3D user prompt or, if LLNL-Earth3D is not initiated, type: 
 

java -jar  LLNL-Earth3D.x.x.jar -help 

 

  

 

 

  



6 
 

3. Ray tracing 
 

Basic usage (output travel times only) 

LLNL-Earth3D was originally designed to compute 3-D ray paths and travel times for many source-

receiver pairs simultaneously, and as efficient as possible.  Therefore, a plain text file containing rows 

with event locations, station locations, and phases is passed to the code.  The event-station-phase rows are 

then distributed using multi-threading techniques. 

 

To ray trace with default options, the general command is: 

 
java -jar  LLNL-Earth3D.x.x.jar -raytrace   earthmodel   events_stations_phases 

 

or, from the command prompt: 

 
 E3D (input command): -raytrace   earthmodel   events_stations_phases 

 

The variables are filenames pointing to the binary earth model (earthmodel )and the event-station-phase 

list (events_stations_phases).  The event-station-phase list can have as many rows (entries) as desired and 

each row is formatted as follows: 

 
[event_lat   event_lon   event_depth   station_lat   station_lon   station_elevation   phase   extra…] 

 

The event_depth and station_elevation are relative to a reference surface defined in the model (mean sea 

level for LLNL-G3Dv3 and other LLNL models).  phase is a phase name such as P or Pn, etc.  extra can 

be any additional columns of information the user wishes to include. 

 

The default output will be a file named events_stations_phases with the added extension ".TT" which 

stands for Travel Times.  The .TT file will contain all of the information in each row of the input file plus 

additional columns of output like the following: 

 
[…input   EARTH3D  traveltime   water_corr_ev   water_corr_st   arc_distance   azimuth   uniqueID] 

 

Each line of output will have the word "EARTH3D" after the input columns if the code was able to ray 

trace the path, and the word "NULL" if it could not.  The travel time (traveltime) follows EARTH3D and 

then an event-side water correction (water_corr_ev) and a station-side water correction (water_corr_st).  

Water corrections arise when an event or station appear to be in the water due to the resolution limitations 

of a given model.  This happens quite often for ocean-island stations. If it is known that the event was not 

in the water, simply add the water_corr_ev term to the traveltime to get the total travel time.  Likewise, if 

it is known that the station is in fact on solid land, add the water_corr_st term to the traveltime to get the 

total travel time. 

 

Additional outputs include the event-station arc distance in degrees (arc_distance), the event-to-station 

azimuth (azimuth) and a unique identifier (uniqueID).  The uniqueID are integers starting with zero that 

correspond to the row number of the input since the row ordering provided in the input file may not be 

preserved.  The reordering occurs due to the multi-threading process which distributes each of the rows to 

multiple processors that complete the tasks at differing rates. 
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3.1 Ray tracing input options 
 

Seismic phases  

LLNL-Earth3D will attempt to compute travel times for a variety of phases.  The user simply must 

identify the desired phase in each line of the events_stations_phases file.  To get a current list of available 

seismic phases along with descriptions, type -listphases at the command prompt or:     

 
java -jar  LLNL-Earth3D.x.x.jar -listphases 

 

Note:  While some phases are relatively simple and have been tested more thoroughly than others (e.g. 

first arriving P and S waves), some other phases are more complex and may be unrealistic in extreme 

model regions and with difficult event-receiver configurations. 

 

 

Travel time tolerances  

For some seismic phases, the ray tracing algorithm begins with a single crude estimate of the path, then 

refines it according the pseudobending/Snell’s law technique to find the minimum-time path.  However, 

some phases (usually regional) require several initial paths to test and refine. For these more complex 

phases, the set of initial paths are partially optimized and down-selected to a smaller set of paths based on 

some initial time tolerance (tolerance1).  The remaining paths are further refined and down-selected a 

final time based on a secondary time tolerance (tolerance2).  See Figure 3 for a visual description. If the 

second tolerance (tolerance2) is greater than zero, it is possible that multiple paths are found to be within 

the given tolerance of the minimum time.  In these cases, multiple paths are returned to the .TT file and 

path files if requested. 

 

To adjust these tolerances, the user may put two numbers representing the two tolerances (in seconds) on 

the input line immediately after the event-station file: 

 
E3D (input command):  -raytrace   earthmodel   events_stations_phases  tolerance1   tolerance2 

 

The default tolerances are 2 and 0 seconds, respectively.  Increasing the first tolerance (tolerance1) will 

allow more rays to be passed to the second phase for further optimization.  Increasing the second 

tolerance (tolerance2) above zero will possibly result in multiple paths and travel times for some phases, 

whereas a second tolerance equal to 0 will return the minimum-time path.     

 

 

Multi-threading 

The default behavior when ray tracing is seek out the number of available processors (Nproc) on the 

working platform and create Nproc+2 threads since this is found to be most efficient.  This default can be 

changed by adding the –nthreads switch followed by the number of threads desired: 

 
E3D (input command):  -raytrace   earthmodel   events_stations_phases   tolerance1  tolerance2  -nthreads  N 

 

where N is the number of threads.  Note that the tolerance values do not need to be specified if the default 

values are satisfactory:  

 
E3D (input command):  -raytrace   earthmodel   events_stations_phases  -nthreads  N 
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3.2 Ray tracing output options 

 
Screen output 

Simply include the switch -verbose or -v to output travel time results to the screen. 

 

Output ray paths 

When ray tracing, LLNL-Earth3D always outputs a travel time file (*.TT) by default.  In addition, there 

are options for outputting ray paths.  To output the full ray paths to files, add the switches -p or -paths 

after the ray tracing command: 

 
E3D (input command):  -raytrace   earthmodel   events_stations_phases  -paths 

  

Note that multiple switches (such as -nthreads N) can be included as well.  The above command will 

output an ASCII file for each row of the events_stations_phases unless a particular path calculation was 

unsuccessful for any reason.   

 

Each of the path file names will begin with input file name (events_stations_phases) with the added 

extension that includes the unique identifier (row number from the input file beginning with 0) followed 

by ".ascii.path".  For example, if the input file name is "myRays.txt", the first output path file name will 

be "myRays.txt.0.ascii.path" and the 2nd file name will be "myRays.txt.1.ascii.path", etc.   
 

Each of the path files will contain a header containing the output travel time information, the number of 

paths computed, the number of points in each path, and the path points.  Each point along the path (each 

row after the header) will have the following format: 
 

[point_lat    point_lon   point_radius   point_distance   point_depth] 

 

where point_distance  is the distance from the event origin to each point along the path (in km).  If the 

actual coordinates of the paths are not needed, another option is to output only the point_distance and 

point_radius using the -distradius or -dr flag:       

 
E3D (input command):  -raytrace   earthmodel   events_stations_phases  -distradius 

 

Similar to the -paths output, each distradius file will have a header followed by points that are represented 

by only 2 columns in this case ([point_distance   point_radius]).  Filenames will have indexes just like the 

.path files, but end with ".distradius" as an extension. 

 

 

  



9 
 

3.3 Examples 

 
Example 1a: Travel times 

In this example, travel times for a small suite of P-wave phases will be computed using the LLNL-G3Dv3 model from Simmons et al. (2012). 

 

Suppose we have created a text file named “myRays.txt” which contains: 

 
37.68   -121.77    4.5   33.61   -116.46  1.28  Pn      user data 

37.68   -121.77    4.5   57.78   -152.58  0.15  PcP     extra info 

37.68   -121.77    4.5  -17.74    178.05  0.801  P      event1 

33.90   -117.05   12.1   33.61   -116.46  1.28  Pg      event2 

-29.90   25.13    35.7   33.61   -116.46  1.28  PKPdf   ev3 

 

The first 7 columns contain the required elements including earthquake latitude/longitude and depth (first 3 elements), the required station 

latitude/longitude and elevation (next 3 elements), and the seismic phase.  The user may add additional columns that will not be used for ray 

tracing.   

 

Here is an example -raytrace command to find the minimum-time paths: 

 
java -jar  Earth3D.5.3.jar   -raytrace   LLNL-G3Dv3.e3d.binary   G:\PROGRAMS\EARTH3D\myRays.txt   -verbose   

 

Since we are not running from the prompt, the model (which also contains the hierarchical tessellation grids and pre-computed data used for ray 

tracing) will be loaded.  The loading process requires some wait time and you will see: 
 

Calculating Cross Products and Arc Distances...  

Finding Triangle Centroids...  

… 

1: Water (top) added  

reading layer[0] 1: Water (top)  

2: Water (bottom) added  

reading layer[1] 2: Water (bottom)  

3: Sediment 1 (top) added  

reading layer[2] 3: Sediment 1 (top)  

4: Sediment 1 (bottom) added 

… 

Inner Core (6371km) added  

reading layer[94] Inner Core (6371km)  

completed earthmodel file read 
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Once the model is loaded, the lines of the “myRays.txt” will be read and ray tracing will commence.  If the -verbose flag is included, the travel 

time output will be displayed on the screen.  In any case, a file named “myRays.txt.TT” will now exist in the current working directory.  The .TT 

file will have the contents: 

 
Earth3D.5.3  -raytrace  LLNL-G3Dv3.e3d.binary  G:\PROGRAMS\EARTH3D\myRays.txt  2.0  0.0 -v 

   33.9000 -117.0500 12.1000  33.6100 -116.4600 1.2800  Pg  event2  EARTH3D  10.756   0.000  0.000   0.57034   120.31098  3 

   37.6800 -121.7700  4.5000 -17.7400  178.0500 0.8010  P   event1  EARTH3D  726.094  0.000 -0.886  78.94891   237.40205  2 

   37.6800 -121.7700  4.5000  33.6100 -116.4600 1.2800  Pn  user data   EARTH3D    87.598    0.000   0.000   5.93075   131.63000  0 

   37.6800 -121.7700  4.5000  57.7800 -152.5800 0.1500  PcP extra info  EARTH3D   547.156    0.000  -0.191  28.47414   324.86188  1 

  -29.9000   25.1300 35.7000  33.6100 -116.4600 1.2800  PKPdf  ev3  EARTH3D  1177.306   0.000   0.000   147.25546   286.55142  4 

 

The top line of the .TT file will have the ray tracing command line inputs that were entered (default travel time tolerances 2 and 0 will appear if 

none were entered).  Each row will contain the original rows of the input file along with the LLNL-Earth3D results after the “EARTH3D” text.  

The elements of output include the travel time, event- and station-side water corrections, arc distance, azimuth, and unique identifiers (last 

column).  See the beginning of the Ray tracing section for more description.  In this case, the first row of the input was the Pn phase, but output is 

written on the 3rd data row due to the multi-threading.  If desired, the rows can be resorted to the original order using the unique identifier. 

 

  

Example 1b: Minimum-time path output  

The previous example did not save the actual ray paths. This example will be an extension of the previous example and demonstrate how to output 

ray paths to ASCII files.  We will work from the command prompt to avoid loading in the model again: 

 
E3D (input command): -raytrace   LLNL-G3Dv3.e3d.binary   G:\PROGRAMS\EARTH3D\myRays.txt -paths 

 

Note that we have added the -paths flag.  This will generate 5 files, 1 path file for each row in the input file.  The path file corresponding with the 

first row of the input file will be named “myRays.txt.0.ascii.path”.  The contents of this file will look like: 

 
> 

>    37.6800  -121.7700  4.5000  33.6100   -116.4600 1.2800  Pn  user data EARTH3D  87.598  0.000  0.000  5.93075  131.63000  0 

> npaths: 1  thispath: 1 

> 221 

   37.6800   -121.7700   6365.6574      0.0000      4.5000 

   37.6757   -121.7642   6365.0248      0.7009      5.1342 

   37.6713   -121.7585   6364.3923      1.4020      5.7683 

   37.6670   -121.7527   6363.7598      2.1033      6.4023 

   37.6626   -121.7469   6363.1274      2.8046      7.0362 

   37.6583   -121.7412   6362.4951      3.5061      7.6701 

   …omitted…   
   33.6104   -116.4604   6371.8688    659.4132     -0.2792 

   33.6102   -116.4602   6371.9291    659.4410     -0.3394 

   33.6100   -116.4600   6371.9894    659.4689     -1.2800 
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The first character of each header line is “>” so that all path files can be concatenated together and plotted with one GMT psxy command. The 

travel time output is included in the header along with the number of ray paths that were found. There are 221 points in this path and the columns 

include latitudes, longitudes, radii, distances along the path, and depth. 

 

  

Example 1c: Multi-paths 

The previous example only output the minimum-time path for each row of the event-station-phase input file. This example will be an extension of 

the previous example and demonstrate how to output multiple ray paths with travel times within some tolerance of the minimum-time path.  

Working from the prompt, type: 

 
E3D (input command): -raytrace   LLNL-G3Dv3.e3d.binary   G:\PROGRAMS\EARTH3D\myRays.txt 4  0.5 -distradius 

 

In the above command, we have changed the first travel time tolerance to 4 seconds and the second time tolerance to 0.5 seconds.  In this case, ray 

paths that arrive within 0.5 seconds of the minimum-time path found will be returned for some local and regional seismic phases such as Pg and 

Pn.  The file named “myRays.txt.TT” will be replaced with: 

 
Earth3D.5.3  -raytrace  LLNL-G3Dv3.e3d.binary  G:\PROGRAMS\EARTH3D\myRays.txt  4.0  0.5 -dr 

   33.9000 -117.0500  12.1000  33.6100  -116.4600  1.2800  Pg  event2  EARTH3D  10.800  0.000  0.000  0.57034   120.31098   3 

   33.9000 -117.0500  12.1000  33.6100  -116.4600  1.2800  Pg  event2  EARTH3D  10.817  0.000  0.000  0.57034   120.31098   3 

   33.9000 -117.0500  12.1000  33.6100  -116.4600  1.2800  Pg  event2  EARTH3D  10.756  0.000  0.000  0.57034   120.31098   3 

   33.9000 -117.0500  12.1000  33.6100  -116.4600  1.2800  Pg  event2  EARTH3D  10.819  0.000  0.000  0.57034   120.31098   3 

   37.6800 -121.7700   4.5000  -17.7400  178.0500  0.8010  P  event1   EARTH3D  726.094  0.000  -0.886  78.94891  237.40205  2 

   37.6800 -121.7700   4.5000  57.7800  -152.5800  0.1500 PcP extra info   EARTH3D  547.156 0.000  -0.230  28.47414  324.86188  1 

   37.6800 -121.7700   4.5000  33.6100  -116.4600  1.2800  Pn  user data  EARTH3D  87.598 0.000  0.000   5.93075  131.63000  0 

   37.6800 -121.7700   4.5000  33.6100  -116.4600  1.2800  Pn  user data  EARTH3D  87.633 0.000  0.000   5.93075  131.63000  0 

   37.6800 -121.7700   4.5000  33.6100  -116.4600  1.2800  Pn  user data  EARTH3D  87.750 0.000  0.000   5.93075  131.63000  0 

   37.6800 -121.7700   4.5000  33.6100  -116.4600  1.2800  Pn  user data  EARTH3D  87.951 0.000  0.000   5.93075  131.63000  0 

  -29.9000  25.1300   35.7000  33.6100  -116.4600  1.2800 PKPdf  ev3  EARTH3D  1177.306 0.000  0.000 147.25546   286.55142  4 

 

Note that the Pg and Pn phases have multiple entries with slightly different travel times.  These multiple entries possibly indicate “true” mutli-

pathing, but there is no guarantee that the multi-paths are significantly different. In other words, multiple starting paths could have converged to 

essentially the same path.   

 

Rather than requesting paths with the -paths flag, we requested simplified path outputs with the -distradius command (which may be shortened to 

“-dr”).  Similar to the full path output, this will generate 5 files (1 for each event-station-phase entry).  The first file will be named 

“myRays.txt.0.distradius” and will look like: 
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> 

>    37.6800  -121.7700 4.5000  33.6100  -116.4600   1.2800 Pn   user data EARTH3D  87.598  0.000  0.000  5.93075  131.63000  0 

> npaths: 4  thispath: 1 

> 221 

    0.0000   6365.6574 

    0.7009   6365.0248 

    1.4020   6364.3923 

    2.1033   6363.7598 

…omitted… 

  659.3853   6371.8085 

  659.4132   6371.8688 

  659.4410   6371.9291 

  659.4689   6371.9894 

> 

> 

>    37.6800  -121.7700 4.5000  33.6100  -116.4600   1.2800 Pn   user data EARTH3D  87.633  0.000  0.000  5.93075  131.63000  0 

      

> npaths: 4  thispath: 2 

> 221 

    0.0000   6365.6574 

    0.7102   6365.0248 

    1.4206   6364.3922 

    2.1310   6363.7597 

…omitted… 

 

In this example, the Pn phase produced 4 distinct paths, all of which are included in the single file.  The path points are now represented only by 

two columns containing the distances along the path from the event (in km) and radii of the points. 
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4. Querying a model 
 

LLNL-Earth3D has a number of utilities to examine or extract properties from a given LLNL-G3D 

formatted binary model.  These include tools for general model queries, extracting profiles, extracting 

layer information and maps. 

 

 

4.1 General queries 

 

Model layer information 

Basic information about a particular model layer structure can be output to the screen with the command: 

 
E3D (input command): -getlayerinfo  earthmodel 

 

Here is an example for the case where the LLNL-Earth3D prompt has not been established and the full 

model path is included: 

 
java -jar  LLNL-Earth3D.5.3.jar  -getlayerinfo   G:\PROGRAMS\EARTH3D\MODELS\LLNL-G3Dv3.e3d.binary 

 

Note that the full model path is not needed if it resides in the working directory.  Also, if the earthmodel 

of interest is already loaded into memory, simply execute with “-getlayerinfo” without the model name.  

Otherwise, the model will be loaded into memory. Example output: 

 
Layer[0], LayerName= '1: Water (top)',  Max.Tess.Level= 6, Mean Radius=  6371.2212, Properties: Vp, 

Layer[1], LayerName= '2: Water (bottom)',  Max.Tess.Level= 6, Mean Radius=  6368.6106, Properties: Vp, 

Layer[2], LayerName= '3: Sediment 1 (top)', Max.Tess.Level= 6, Mean Radius=  6368.6107, Properties: Vp, 

Layer[3], LayerName= '4: Sediment 1 (bottom)', Max.Tess.Level= 6, Mean Radius=  6368.3758, Properties: Vp, 

Layer[4], LayerName= '5: Sediment 2 (top)', Max.Tess.Level= 6, Mean Radius=  6368.3758, Properties: Vp, 

Layer[5], LayerName= '6: Sediment 2 (bottom)', Max.Tess.Level= 6, Mean Radius=  6367.8412, Properties: Vp, 

…omitted… 

Layer[90], LayerName= 'Inner Core (5971km)', Max.Tess.Level= 4, Mean Radius=   400.0002, Properties: Vp, 

Layer[91], LayerName= 'Inner Core (6071km)', Max.Tess.Level= 4, Mean Radius=   299.9996, Properties: Vp, 

Layer[92], LayerName= 'Inner Core (6171km)', Max.Tess.Level= 4, Mean Radius=   199.9997, Properties: Vp, 

Layer[93], LayerName= 'Inner Core (6271km)', Max.Tess.Level= 4, Mean Radius=    99.9999, Properties: Vp, 

Layer[94], LayerName= 'Inner Core (6371km)', Max.Tess.Level= 4, Mean Radius=     0.0000, Properties: Vp, 

 

Tessellation node locations 

The latitudes and longitudes of the spherical tessellation grids may be output to a file with the command: 

 
E3D (input command): -writelatlons maxlevel 

 

where maxlevel is an integer of the maximum tessellation level.  Note that if a model containing a 

tessellation grid is not already loaded into memory, the above command will need to construct a spherical 

tessellation grid.  For example, the LLNL-G3Dv3.e3d.binary model is defined up to level 6, which 

consists of 40,962 vertices.  To get the latitude and longitude locations of each of nodes, type:  

 
 E3D (input command): -writelatlons  6 

 

which will create a file named "SphericalTessellationCoordinates.UpTo.Level.6.txt" with the contents 

that look like the following: 
 

Vertex   Latitude        Longitude 

0        90.000000        0.000000  

1        26.719301       72.000000  

2        26.719301        0.000000  

3        26.719301      -72.000000  
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4        26.719301      144.000000  

5        26.719301     -144.000000  

6       -26.719301       36.000000  

7       -26.719301      -36.000000  

8       -26.719301      108.000000  

9       -26.719301      180.000000  

10      -26.719301     -108.000000  

11      -90.000000        0.000000  

…omitted…  

40957       -50.418391     -144.925818  

40958       -49.400876     -144.000000  

40959       -52.462817     -143.032003  

40960       -53.490721     -144.000000  

40961       -52.462817     -144.967997    
 

General property query 

Any model_property of interest (e.g. Vp, Vs, etc.) can be extracted using the -modelquery switch and 

passing a file containing a set of points to the code: 

 
E3D (input command): -modelquery  earthmodel    model_property    points_file 

 

where points_file is a user-generated plain text file with 3 columns containing the points of interest.  Each 

row of the points_file should be [latitude  longitude  depth].  The query will return a new text file that 

contains the original input with an addition column with values corresponding to the model_property 

value.  The output file name will begin with the input file name with an added extension that corresponds 

to the property name.  For example, we may have a file named "MyPoints.txt" which contains the entries: 

 
 30.95   40.51   10.9 

 40.01   30.79   2400 

-29.92  -31.42  1000 

 

The command 

 
E3D (input command): -modelquery  LLNL-G3Dv3.e3d.binary   Vp   MyPoints.txt 

 

will generate a file named "MyPoints.txt.Vp" with a 4th column containing Vp values for each point like 

the following: 
 

   30.9500     40.5100     10.9000      6.2003  

   40.0100     30.7900   2400.0000     13.1993  

  -29.9200    -31.4200   1000.0000     11.4631 

 

 

4.2 Profiles and cross sections  

 

Extracting 1-D profiles 

LLNL-Earth3D will create 1-D profiles by interpolating any model property such as Vp at any specified 

latitude and longitude.  This is executed using the -create1dprofile command: 

 
E3D (input command): -create1dprofile   earthmodel    model_property    latitude   longitude  

  

The above command will output a text file named 1D_Profile_*.xy where the wildcard will consist of the 

model name, property and coordinates.  The *.xy file will contain 2 columns which are the radii and 

model values.   
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For example, we can extract a P-wave velocity profile at latitude/longitude location of (30.5, -114.2) by 

typing: 
 

E3D (input command): -create1dprofile   LLNL-G3Dv3.e3d.binary   Vp   30.5   -114.2 

 

This will output a file named “1D_Profile_LLNL-G3Dv3.e3d.binary_Vp_30.5_-114.2.xy” which will 

look like: 

 
 6372.7738      1.5000  

 6372.7679      1.5000  

 6372.7679      3.8117  

 6372.7679      3.8117  

 6372.7679      2.4663  

 6372.1503      2.4663  

 6372.1503      4.2999  

…omitted… 

 1100.2086     11.0725  

 1000.1895     11.1054  

  900.1710     11.1352  

  800.1516     11.1619  

  700.1323     11.1854  

  600.1135     11.2058  

  500.0947     11.2230  

  400.0761     11.2371  

  300.0565     11.2481  

  200.0377     11.2559  

  100.0188     11.2606  

    0.0000     11.2622  

 

 

Extracting 2-D profiles (cross sections) - default usage 

LLNL-Earth3D will create 2-D profiles (cross sections) by interpolating any model property such as Vp 

along a great circle path between 2 specified latitude/longitude points.  This is executed using the -

create2dprofile command: 

 
E3D (input command): -create2dprofile  earthmodel   model_property   lat1  lon1  lat2  lon2 

  

The above command will output a text file named 2D_Profile_*.xyz where the wildcard will consist of 

the model name, property and coordinates.  The *.xyz file will contain 3 columns containing:  

 

[profile_distance    radii    model_property_value] 

 

where profile_distance is the distance (in km) from the starting point defined by lat1 and lon1.  The 

profiles will be evenly sampled in radius and in distance for compatibility with making images with GMT 

commands. With the default inputs, the code calculates the maximum resolution of the 3-D model and 

then samples the path 5 times more densely. The model is sampled at every ~5 km in radius from 6370.0 

to ~3800.0 km (the crust and mantle). 

 

For example, we can extract a P-wave velocity cross section from the latitude/longitude location of (30.5, 

-114.2) to (35, -116.9): 
 

E3D (input command): -create2dprofile   LLNL-G3Dv3.e3d.binary   Vp   30.5   -114.2   35.0   -116.9 

 

This will output a file named “2D_Profile_LLNL-G3Dv3.e3d.binary_Vp_30.5_-114.2_35.0_-116.9.xyz” 

which will look like: 
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    0.0000   6370.0000      6.0949  

    0.0000   6365.0097      6.0949  

    0.0000   6360.0194      6.2045  

    0.0000   6355.0291      6.2045  

    0.0000   6350.0388      6.6562  

    0.0000   6345.0485      6.6562 

…omitted…  

    0.0000   3814.9709     13.4572  

    0.0000   3809.9806     13.4631  

    0.0000   3804.9903     13.4689  

   23.3504   6370.0000      6.0980  

   23.3504   6365.0097      6.0980  

   23.3504   6360.0194      6.2039  

   23.3504   6355.0291      6.2039  

…omitted… 

  560.4085   3814.9709     13.4601  

  560.4085   3809.9806     13.4668  

  560.4085   3804.9903     13.4735 

 

In addition, files containing the radii of each model layer along the great circle path will be output to files 

named: 

 

“Layer_0_LLNL-G3Dv3.e3d.binary_30.5_-114.2_35.0_-116.9.xy” 

“Layer_1_LLNL-G3Dv3.e3d.binary_30.5_-114.2_35.0_-116.9.xy” 

… 

“Layer_94_LLNL-G3Dv3.e3d.binary_30.5_-114.2_35.0_-116.9.xy” 

   
Each of the above files will have 2 columns containing [profile_distance    radii] for plotting overlays of 

the undulating model surfaces if desired (possibly included in a GMT script). 

 

 

Extracting 2-D profiles (cross sections) - set radial limits 

The default radius range (in the example above) spans crust and mantle.  If it is desired to expand or 

restrict the radius, simply add 2 additional terms with the minimum radius (minrad) and maximum radius 

(maxrad): 

 
E3D (input command): -create2dprofile  earthmodel   model_property   lat1  lon1  lat2  lon2  minrad  maxrad 

 

Extracting 2-D profiles (cross sections) - set radial sample rate 

The cross section output can be further refined by changing the vertical (radial) sample rate by including 

an additional number (delta) which defines the distance between points in km: 

 
E3D (input command): -create2dprofile  earthmodel  model_property   lat1  lon1  lat2  lon2  minrad  maxrad  delta 
 

 

Extracting 2-D profiles (cross sections) - return percent perturbations 

The default values returned are returned in an absolute sense (e.g. absolute Vp, Vs, etc.).  An alternative 

output is in terms of percent perturbation relative to the mean value in each layer.  This is done by adding 

the flag “-dpct” to the end of the -create2dprofile command:    

 
E3D (input command): -create2dprofile  earthmodel  model_property   lat1  lon1  lat2  lon2  -dpct 

 

Note that values in the sedimentary and crustal layers can be very high and some values may be 

meaningless if there is zero thickness. 
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4.3 Map output 
 

LLNL-Earth3D may be used to extract map data for a specified model_property using the -createmap 

command:  

 
E3D (input command): -createmap  earthmodel  model_property    minlat   minlon   maxlat   maxlon  layerindex 

 

where minlat/minlon defines the lower left-hand corner of the map region, maxlat/maxlon defines the 

upper right-hand corner of the bounded region, and layerindex is the model layer index (beginning with 

index 0).  Hint:  Use the -getlayerinfo command to get the index number of the layer desired. 

 

The above command will output a text file named Map_*.xyz where the wildcard will consist of the 

model name, property and bounding coordinates.  The *.xyz file will contain 3columns which are: 

 

[latitudes   longitudes  model_values]. 

 

For example, the following command creates a map data file containing absolute P-wave velocity for 

layer index 16 in the LLNL-G3Dv3 model:   

 
E3D (input command): -createmap   LLNL-G3Dv3.e3d.binary   Vp   15.0   30.0   45.0   90.0   16 

 

This will create a file named “Map_ LLNL-G3Dv3.e3d.binary_Vp_16_15.0_30.0_45.0_90.0.xyz” which 

will have 3 columns with the latitudes, longitudes and Vp values: 
  

   15.0000     30.0000      8.0701  

   15.0000     30.2166      8.0707  

   15.0000     30.4332      8.0714  

 …omitted… 

   15.0000     89.5668      8.0778  

   15.0000     89.7834      8.0787  

   15.2158     30.0000      8.0719  

   15.2158     30.2166      8.0726     

 …omitted… 

   45.0000     89.3502      8.1448  

   45.0000     89.5668      8.1401  

   45.0000     89.7834      8.1376  
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5. Model importation 

 
LLNL-Earth3D is specifically designed to work with LLNL-G3D formatted Earth models stored in a 

binary stream.  It is possible to import alternative Earth models and/or potentially use LLNL-Earth3D as a 

lookup table for user-defined variables with a quasi-spherical spatial arrangement.  Since our primary 

focus is on structural models of the Earth, the following text specifically describes how to import an Earth 

model. 

 

Hierarchical file scheme 

Constructing a LLNL-G3D formatted binary file is achieved by first constructing several plain text files.  

The text files include i) a MasterModelDefinitions file with the top-level information about a model, ii) 

LayerFiles containing information about specific layers defined in the master file, iii) PropertyFiles with 

model values for a specific property (e.g. Vp) in a specific layer, and iv) SeaLevelRadii file containing the 

radii corresponding to sea level at nodes defined by the spherical tessellation grids.  Below is a schematic 

of the file structure: 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modelname: user-defined name 
shape: sphere, spheroid, or geoid 
maxresolution: integer value   
sealevel_radii: filename  
LAYERS: 

Layer 1 filename 

Layer 2 filename 

……… 

Layer N filename 

END 

MasterModelDefinitions 

File 

Layer 1 name               

Continuity                                   

TessellationLevel                                         

NumberOfNodes                                      

                                         

VARIABLES:                               

Property1 filename for this layer 

Property2 filename for this layer 

……… 

PropertyM filename for this layer 

END 

 

NODE RADII: 

Radius at vertex 0 

Radius at vertex 1 

……… 

Radius at vertex J  

END                           

… 
Layer 

Files 

Layer 2 name               

Continuity                                   

TessellationLevel                                         

NumberOfNodes                                      

                                         

VARIABLES:                               

Property1 filename for this layer 

Property2 filename for this layer 

……… 

PropertyM filename for this layer 

END 

 

NODE RADII: 

Radius at vertex 0 

Radius at vertex 1 

……… 

Radius at vertex J  

END                           

Layer N name               

Continuity                                   

TessellationLevel                                         

NumberOfNodes                                      

                                         

VARIABLES:                               

Property1 filename for this layer 

Property2 filename for this layer 

……… 

PropertyM filename for this layer 

END 

 

NODE RADII: 

Radius at vertex 0 

Radius at vertex 1 

……… 

Radius at vertex J  

END                           

sealevel_radii                          
MaxTessellationLevel integer         
NumberOfNodes                                      
Sea level radius at vertex 0 
Sea level radius at vertex 1 
… 
Sea level radius at vertex J 
reference 

Property1 name for Layer 1              

                                         

VALUES:                               

Property1 value at vertex 0 

Property1 value at vertex 1 

……… 

Property1 value at vertex J 

END 

Property2 name for Layer 1               

                                         

VALUES:                               

Property2 value at vertex 0 

Property2 value at vertex 1 

……… 

Property2 value at vertex J 

END 

PropertyM name for Layer 1              

                                         

VALUES:                               

Property2 value at vertex 0 

Property2 value at vertex 1 

……… 

Property2 value at vertex J 

END 

… Property 

Files 

SeaLevelRadii File 
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MasterModelDefinitions file content 

In the MasterModelDefinitions file shown in the schematic (as well as the other files), the values in bold 

font are needed verbatim and the values in italics are user-defined inputs.  The text needed in the 

MasterModelDefinitions file is simply the name of the model to construct, the general model shape, the 

maximum tessellation level and file names.  The model name can be anything the user chooses, but the 

shape of the model being created must be one of the 3 option listed in the schematic.  In any case, the user 

must define the radii corresponding to sea level and the file name should be listed.  Here is an example for 

the LLNL-G3Dv3 model build: 

modelname:   LLNL-G3Dv3 
shape:   geoid 
maxresolution:    6   
sealevel_radii:  sealevel_radii.ascii.dat 
LAYERS: 

LAYER.1.1.ascii.dat                               

LAYER.1.2.ascii.dat                                
LAYER.1.3.ascii.dat                                
LAYER.1.4.ascii.dat                                
LAYER.1.5.ascii.dat    
…omitted… 
LAYER.3.35.ascii.dat                               
LAYER.3.36.ascii.dat                               
LAYER.3.37.ascii.dat                               
LAYER.3.38.ascii.dat     
END                  

 

The layer file names must be in order from the top down (surface to the bottom of the model) and the 

radii of any defined layer may not be greater than the radii of any layer listed above it (no crossing 

surfaces). However, the layers may “pinch out” and have the same radii as the layer above.  Note that 

the layer file names may be anything the user chooses.  The layer names in the example above are our 

personal nomenclature.  Additionally, file system paths may be included if the files reside in different 

locations or sub-directories (e.g. G:\MyModel\Layer1.1\Layer1.1.ascii.dat). 

 

 

Node ordering 

Each model property (e.g. Vp, Vs, surface radii) must be defined at a specific set of latitude-longitude 

points determined by the spherical tessellation recursion process.  The model values listed in the 

SeaLevelRadii file and the PropertyFiles must be interpolated by the user to each of these points and 

written to the text files in a precise sequence. To get a list of the sequence of hard-wired latitude-

longitude points, type: 

 
E3D (input command): -writelatlons  maxlevel 

    

This will create a text file with the latitude-longitude locations of the tessellation node points for a grid 

defined at the requested maximum tessellation level.  The number of node points for a particular 

tessellation level can also be determined from the output.  

 

Note that the sequence of the latitude-longitude points never changes, regardless of the tessellation level 

requested. Instead, points belonging to higher tessellation level grids are appended to the bottom of the 

list of points from the lower level grids.  
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SeaLevelRadii file 

The SeaLevelRadii file is a user-defined file containing the radii corresponding to a reference whereby 

depth is measured (the reference radius is often sea level).  The text file must contain a header line, 

followed by the maximum tessellation level, and the number of nodes.  The radius values are then listed 

in the sequence of latitude-longitude points defined by the spherical tessellation recursion process. 

 

Here is an example for the LLNL-G3Dv3 build where the sealevel_radii file was named 

“sealevel_radii.ascii.dat” according the MasterModelDefinitions file: 

 
sealevel_radii                           
6                                        
40962                                    
6356.765920 
6373.798596 
...omitted… 
6364.343637 
6364.713855 
reference 

 

 

Layer files 

The LayerFiles contain information about each of the layers in the model.  The header includes a user-

defined layer name and a Continuity descriptor that identifies whether the layer (or surface) is continuous 

or discontinuous.  The next 2 header entries are the tessellation level and number of points, similar to the 

entries in the SeaLevelRadii file. Note that the resolution (or tessellation) level may differ for each of 

the layers. 

 

There are 3 possible values for Continuity:  i) “continuous” if the surface is not at a discontinuity, ii) “top” 

if the surface is the top-side of discontinuity, or iii) “bottom” if the surface is the underside of a 

discontinuity.  An example of a “top” is a layer defined at the Moho and with model properties 

corresponding to the bottom of the crust (possible model property might be Vp with values near 6.5 

km/s). An example of a “bottom” is a layer defined at the Moho and with model properties corresponding 

to the top of the mantle (possible model property might be Vp with values near 8.0 km/s).  Note that to 

properly form a discontinuity, the radii of each of the “top” and “bottom” surfaces should be exactly the 

same. 

 

Note: In order to specify some particular phases for 3-D ray tracing, certain layer names (designated in 

the first line of header) must contain specific strings that identify them as special layers.  The strings can 

be upper or lower case, and may be anywhere in the name of the layer.  The current list of special layer 

names currently include: "water", "upper crust", "lower crust", "moho", "transition zone", "CMB", and 

"ICB". These special strings can be in the layer name of a discontinuity top or bottom (or both). 

Currently there is no specific designation for the "410" or "660", just identify all layers in the transition 

zone with "transition zone" in the name.  

 

Following the header information is a list of filenames containing the model properties (or variables) 

associated with a given layer.  The user may include any properties (Vp, Vs, Q, etc.), but note that it is 

expected that each layer have the same collection of associated properties. 

 

Following the list of model property file names is a list of node radii values for each of the vertices.  The 

radii are defined from the center of the Earth to the latitude-longitude points defined in the -writelatlons 

output file described above. 
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Below, we will show some example layer file contents for the LLNL-G3Dv3 P-wave model where we are 

also including some S-wave velocities for demonstration.  The LLNL-G3Dv3 model is defined at 

tessellation level 6 (~1° node spacing) in the crust and upper mantle.  In the lower mantle however, the 

maximum tessellation level is 5 (~2° node spacing). 

 

Here is an example layer file contents for the first layer in the model which defines the top of the water 

layer: 

 
1: Water (top)                           
bottom                                   
6                                        
40962                                    
                                         
VARIABLES:                               
LAYER.1.1.Vp.ascii.dat 
LAYER.1.1.Vs.ascii.dat                   
END                                      
                                         
NODE_RADII:                              
6356.765920 
6374.044134 
6374.112587 
…omitted… 
6364.343637 
6364.713855 
END 

 

In the example shown above, notice that we include the string “Water” in the name so that particular 

seismic phases can be ray traced (e.g. we can compute both pwP and pP).  The top of the water is a 

discontinuity due to the air-water interface and it thus a “bottom” since it is the underside of that 

discontinuity. The file names for the variables (properties) are clearly pointing to files with Vp and Vs 

values, but there is no file naming convention required by the code.  

 

The next example is a layer file for the bottom of the lower crust: 

 
14: Lower Crust (bottom)                 
top                                      
6                                        
40962                                    
                                         
VARIABLES:                               
LAYER.1.14.Vp.ascii.dat 
LAYER.1.14.Vs.ascii.dat 
END                                      
                                         
NODE_RADII:                              
6343.987562 
6336.362607 
…omitted… 
6354.162211 
6354.238545 
END 

 

In the example above, the bottom of the lower crust is a discontinuous “top” since it is the top side of the 

Moho discontinuity. 
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The next example is the layer file contents for the layer also at the Moho, but representing the top of the 

upper mantle: 

 
15: Top of mantle (Moho)                 
bottom                                   
6                                        
40962                                    
                                         
VARIABLES:                               
LAYER.1.15.Vp.ascii.dat                  
LAYER.1.15.Vs.ascii.dat  
END                                      
                                         
NODE_RADII:                              
6343.987562 
6336.362607 
…omitted… 
6354.162211 
6354.238545 
END  

 

Notice that in the above example, we include the string “Moho” in the layer name so that this surface may 

be identified when computing certain seismic phases such as Pn and PmP.  Also notice that the radii are 

exactly the same as the previous example which is the layer file for the bottom of the lower crust. 

 

The next example is the layer file contents for a lower mantle surface at approximately 971 km depth: 

 
4: Lower Mantle (971km)                  
continuous                               
5                                        
10242                                    
                                         
VARIABLES:                               
LAYER.2.4.Vp.ascii.dat 
LAYER.2.4.Vs.ascii.dat                   
END                                      
                                         
NODE_RADII:                              
5389.017000 
5402.192897 
…omitted… 
5394.890116 
5395.456085 
END    

 

In the example above, the layer is not a discontinuity and is therefore marked “continuous”.  In addition, 

this layer is defined at a lower resolution level than the previous example (tessellation level 5 rather than 

6).  The layer name contains a “4” since this is the 4th lower mantle layer.  This is our personal layer 

naming convention and thus has no particular significance to the user. 

 

 

Property (or Variable) files 

The PropertyFiles are simple text files containing the name of the properties and actual model values 

such as Vp.  The top line of the file should be the name of the property which is user-defined.  It should 
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be noted that, if the user wishes to execute ray tracing utilities, Vp and/or Vs must be one of the properties 

and the name given to these properties must be exactly “Vp” and/or “Vs”.  

 

Here is an example property for the LLNL-G3Dv3 mantle P-wave velocity at the Moho: 

 
Vp                                       
                                         
VALUES:                                  
8.146360 
8.198282 
8.119254 
8.172410 
…omitted… 
8.035326 
8.017037 
8.016469 
8.020075 
END 

 

Again, the model property values are listed in the precise sequence of the latitude-longitude points listed 

by the -writelatlons command. 

 

 

Execution 

Once the collection of text files are completed, the model importation process may be initiated using the 

LLNL-Earth3D -importmodel command as follows:  

 
E3D (input command):  -importmodel   MasterModelDefinitions 

 

where MasterModelDefinitions is a user-defined filename. The process will compute a spherical tessellation 

grid at the highest tessellation level needed and populate a binary stream with complete model 

information. The code will also compute and store normal vectors to surfaces that are listed as 

discontinuous for the purpose of more efficient ray tracing.   

 

If Vp and/or Vs are included as properties, velocity gradients will be computed at each point in the model 

and stored with the model.  This pre-computation increases the efficiency of the ray tracing algorithms.  

Note that the pre-computation steps could take substantial amounts of time, which is a function of the 

total number of model nodes.  For example, the LLNL-G3Dv3 P-wave velocity model consists of ~1.6 

million points and takes ~1.5 hours to complete on a moderate PC workstation.  


